منابع مشابه
An improved inexact Newton method
For unconstrained optimization, an inexact Newton algorithm is proposed recently, in which the preconditioned conjugate gradient method is applied to solve the Newton equations. In this paper, we improve this algorithm by efficiently using automatic differentiation and establish a new inexact Newton algorithm. Based on the efficiency coefficient defined by Brent, a theoretical efficiency ratio ...
متن کاملAn improved particle swarm optimization with a new swap operator for team formation problem
Formation of effective teams of experts has played a crucial role in successful projects especially in social networks. In this paper, a new particle swarm optimization (PSO) algorithm is proposed for solving a team formation optimization problem by minimizing the communication cost among experts. The proposed algorithm is called by improved particle optimization with new swap operator (IPSONSO...
متن کاملNewton - Secant method for solving operator equations ∗
where F is a Fréchet-differentiable operator defined on an open subset D of a Banach space X with values in a Banach space Y . Finding roots of Eq.(1) is a classical problem arising in many areas of applied mathematics and engineering. In this study we are concerned with the problem of approximating a locally unique solution α of Eq.(1). Some of the well known methods for this purpose are the f...
متن کاملParallel Interval Newton Method on CUDA
In this paper we discuss a parallel variant of the interval Newton method for root finding of non linear continuously differentiable functions on the CUDA architecture. For this purpose we have investigated different dynamic load balancing methods to get an evenly balanced workload during the parallel computation. We tested the functionality, correctness and performance of our implementation in...
متن کاملSolving Nonlinear Eigenvalue Problems using an Improved Newton Method
Finding approximations to the eigenvalues of nonlinear eigenvalue problems is a common problem which arises from many complex applications. In this paper, iterative algorithms for finding approximations to the eigenvalues of nonlinear eigenvalue problems are verified. These algorithms use an efficient numerical approach for calculating the first and second derivatives of the determinant of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1986
ISSN: 0022-247X
DOI: 10.1016/0022-247x(86)90303-3